Test Study: Implementing an Electric Utility's Network Information Management System in AWS on PostgreSQL # **Table of Contents** ### Test Study | Introduction and overview | 2 | |-----------------------------------|----| | Tested workflows | 4 | | Physical architecture | 11 | | Design choices and considerations | 16 | | Test methods and results | 21 | | Using this test study | 29 | # Network Information Management System: Electric Utility (PostgreSQL) This test study was conducted in January 2023 and evaluates the Reference Architecture for a Network Information Management System with: - Workflows representative of an electric utility - An enterprise geodatabase configured with PostgreSQL - Amazon Web Services (AWS) cloud infrastructure The system presented in this test study was designed at a physical level, and incorporates several design choices that are described in detail. The system was deployed and tested for both performance and end-user experience, with a target design load of 15 ArcGIS Pro editors and 200 ArcGIS web users (general user personas). Learn more about test studies to gain important context. **Note:** It is important that you become familiar with the reference architecture before the test study, as there is important information and resources that are not duplicated here. ### **Overview of capabilities** A foundational Network Information Management System delivers the following capabilities as defined in the data editing and management system pattern: - Service-based editing of relational data, including geometry and attributes. - Data collection workflows using forms and/or maps. - Complex utility network information management using the ArcGIS Utility Network as an advanced data model. - Viewing and querying network assets through web applications. - Performing upstream & downstream trace analytics. ### **Software list** The system capabilities are delivered through the following software with all available patches applied: - ArcGIS Pro 3.3 (latest version here) - ArcGIS Enterprise 11.3 (latest version here) - ArcGIS Monitor 2023 (latest version here) - ArcGIS License Manager 2024 (latest version here) - ArcGIS Online The design was deployed on virtual machines based on a Microsoft Windows operating system. **Note:** The software versions listed above were the latest available when this system test study was deployed and tested. Esri strongly recommends using the latest available software versions when possible. ### **Data characteristics** This test study tested a 100 GB electric utility dataset with a geographic extent of roughly 275,000 square miles. It contained about twenty million features, 2,000 subnetworks, and 650,000 electric meters at customer locations. ### **Tested workflows** To ensure that workflows are useful for system design purposes, they need to represent real user experiences, and the actual steps that users will take in interacting with the system. These workflows represent some of the foundational activities required to create, access, and maintain an electric network. The contents of the workflows were defined by working with experienced staff and Esri customer feedback to identify the specific steps, sequencing and type of activities involved in each workflow. Developing a workflow as a detailed, stand-alone set of steps allows them to be repeated, iterated on to tweak operations, or adjusted to improve performance or user experience. Once each workflow is clearly defined, it is used consistently throughout the remainder of testing to establish the performance baseline and conduct load tests. If your organization does not have clearly documented, standard workflows with individual steps defined, consider using these workflows as a starting point that can be adjusted based on your needs. This implementation of the Network Information Management System's reference architecture was load tested for the following nine (9) electric utility workflows: - Load management - New service with existing feature - New service with new feature - Update asset - Electric tracing - Phase management - Query assets - View assets - Summarize assets These workflows support both editor and general user user personas. ### **Editor workflows** Editors perform edit operations on the data, either editing attributes and geometry on single records or editing attributes in bulk. Editors may range in expertise and overall comfort with technology and may also perform edits in the office or in the field. ### **Load management** This workflow represents the set of tasks an editor persona performs for the redirection of load from one circuit to another. - 1. Sign in to ArcGIS Pro and open project - 2. Locate (MVC-1) - 3. Zoom to selection - 4. Create and change version - 5. Edit attributes - 6. Locate (MVC-2) - 7. Validate Topology (version) - 8. Save - 9. Run Trace - 10. Locate (MVC-1 for Trace) - 11. Run Trace - 12. Update Subnetwork (network 1) - 13. Update Subnetwork (network 2) - 14. Reconcile - 15. Post - 16. Change version to default - 17. Validate topology (default) - 18. Update Subnetwork (network 1 default) - 19. Update Subnetwork (network 1 default) ### New service with existing feature This workflow represents the set of tasks an editor persona performs to add a new customer service connection from an existing transformer. - 1. Sign in to ArcGIS Pro and open project - 2. Login and open project - 3. Locate - 4. Zoom to selection - 5. Create and change version - 6. Create service meter - 7. Enter containment mode - 8. Create connection object - 9. Exit containment mode - 10. Modify associations - 11. Validate topology (version) - 12. Save - 13. Trace - 14. Reconcile - 15. Post - 16. Change version to default - 17. Validate topology (default) ### New service with new feature This workflow represents the set of tasks an editor persona performs to add a new customer service connection with a new pole, transformer, etc. - 1. Sign in to ArcGIS Pro and open project - Locate - 3. Zoom to selection - 4. Create and change version - 5. Create distribution FE owned - 6. Create distribution pole-other - 7. Split - 8. Create electric attachment - 9. Create overhead single phase conductor - 10. Create electric attachment - 11. Create overhead single phase transformer - 12. Enter containment mode - 13. Create overhead - 14. Exit containment mode - 15. Create service meter - 16. Enter containment mode - 17. Create connection object - 18. Exit containment mode - 19. Modify associations - 20. Validate topology (version) - 21. Save - 22. Trace - 23. Reconcile - 24. Post - 25. Change version to default - 26. Validate topology (default) ### **Update** asset This workflow represents the set of tasks an editor persona performs to move an asset or update attributes of an asset. - 1. Sign in to ArcGIS Pro and open project - 2. Locate - 3. Zoom to selection - 4. Create and change version - 5. Modify feature - 6. Update attributes - 7. Validate topology (version) - 8. Save - 9. Reconcile - 10. Post - 11. Change version to default - 12. Validate topology ### **Electric tracing** This workflow represents the set of tasks an editor persona performs to perform an upstream protective trace and a downstream customer trace. - 1. Sign in to ArcGIS Pro and open project - 2. Locate - 3. Zoom to selection - 4. Run Upstream trace - 5. Run Downstream trace ### **Phase management** This workflow represents the set of tasks an editor persona performs to move a service to a different phase. - 1. Sign in to ArcGIS Pro and open project - 2. Locate - 3. Zoom to selection - 4. Create and change version - 5. Edit attribute - 6. Validate topology (version) - 7. Update subnetwork (version) - 8. Reconcile - 9. Post - 10. Change version to default - 11. Validate topology (default) - 12. Update subnetwork (default) ### **General user workflows** General users are typically considered "viewers" within the system, and primarily discover and use content created by others within the organization. ### **Query assets** This workflow represents the set of tasks a general user persona would perform in a web application to identify and view assets of a certain type or by a set of attributes. - 1. Sign in to ArcGIS Enterprise - 2. Open web application - 3. Open query builder - 4. Enter query criteria - 5. Run the query - 6. Zoom to results ### **View assets** This workflow represents the set of tasks a general user persona would perform in a web application to view and search for a specific device within the network. - 1. Sign in to ArcGIS Enterprise - 2. Open web application - 3. Enter device ID in search box - 4. Select result from suggestions - 5. Zoom to device ### **Summarize assets** The steps below represent a use case where an ArcGIS Dashboard is open on a screen and refreshes every 30 seconds. - 1. Sign in to ArcGIS Enterprise - 2. Open dashboard - Dashboard is accessed continuously - Layers are set to refresh every 30 seconds # **Physical architecture** This architecture was evaluated in January 2023 with: - · A small-medium electric utility in mind - Support for electric utility workflows with a target design load of 15 ArcGIS Pro editors and 200 ArcGIS web users (general user personas) - · An enterprise geodatabase configured with PostgreSQL - AWS cloud infrastructure The system was designed for and tested against the specified workflows, with adjustments to the machine types and sizes as needed based on test results. Download a Microsoft Visio file of this architecture. Learn more about diagramming resources for ArcGIS systems. ### Note: For more information on the software components and key interactions in this architecture, review the Network Information Management System reference architecture. ## Resourcing the architecture These are the machine sizes chosen and validated for this test study. It is still highly recommended that you go through a design process yourself to account for your business and technical requirements. ### Machine types and sizes The following represent the machine sizes chosen and validated for the scope and purpose of this test study. However, it is highly recommended to follow a complete design process to account for your business and technical requirements. Esri offers system architecture design services should you need help determining all of the different factors relating to your organization's physical design, such as networking, storage, system environments, and sizing. Minimum system requirements for each component are listed in documentation available online. ### Desktop (ArcGIS Pro & web browser) - 3 machines used in testing - G4DN.2xlarge - 4 CPU (8 vCPU) - 32 GB RAM - 16 GB GPU - 1 TB Disk ### **Portal for ArcGIS** - 2 machines - M6i.xlarge - 2 CPU (4 vCPU) - 16 GB RAM - 128 GB Disk ### **ArcGIS GIS Server** - 2 machines - M6i.2xlarge - 4 CPU (8vCPU) - 32 GB RAM - 128 GB Disk ### **ArcGIS Server (hosting server)** - 2 machines - M6i.2xlarge - 4 CPU (8vCPU) - 32 GB RAM - 128 GB Disk ### **ArcGIS Data Store (relational)** - 2 machines - M6i.xlarge - 2 CPU (4 vCPU) - 16 GB RAM - 128 GB Disk ### **ArcGIS Web Adaptor** - 2 machines - M6i.large - 1 CPU (2vCPU) - 8 GB RAM - 128 GB Disk ### **ArcGIS Monitor** - 1 machine - M6i.2xlarge - 4 CPU (8vCPU) - 32 GB RAM - 128 GB Disk ### File storage - 1 instance - C6i.xlarge - 1 CPU (2vCPU) - 8 GB RAM - 123 GB Disk ### Database - 1 machine - M6i.4xlarge - 4 CPU (8 vCPU) - 64 GB RAM - 1 TB Disk ### Domain server - 1 machine - M6i.4xlarge - 8 CPU (16 vCPU) - 65 GB RAM - 1 TB Disk ### Additional infrastructure considerations The following are additional areas of consideration when designing a Network Information Management System and an explanation of some infrastructure choices made for this test study. ### **Application load balancer (ALB)** At least one third-party load balancer is required in a highly available ArcGIS Enterprise deployment to handle client traffic to portal and server sites as well as internal traffic between the software components. Although the ArcGIS Web Adaptor is considered a load balancer, it is insufficient on its own to serve as a load balancer in a high availability configuration. Therefore, in this test study, an Amazon Web Services (AWS) Application Load Balancer was used. ### **Shared storage** To successfully implement a highly available ArcGIS Enterprise deployment, the configuration stores must be stored in a highly available, shared location. This ensures this data remains accessible even if one server fails, providing uninterrupted service to end-users. Additionally, shared storage simplifies data management in a multi-machine deployment and improves scalability by centralizing data storage and allowing for expansion as needed. ### System components not included in the diagram While antivirus software and AWS networking components are not illustrated in this diagram, they were present in the test study. # **Design choices and considerations** The following considerations are organized around the architecture pillars of the ArcGIS Well-Architected Framework. The appropriate application of best practices and architectural approaches in each of these technical areas contributes significantly to the successful design and implementation of well-architected systems. ### **Performance and scalability** ### **Workload separation** The choice to design for workload separation was made to help achieve an optimal distribution of compute resources across the system. In the test study, editing requests generally took longer to process than standard map requests, so the choice to isolate editing workloads with dedicated compute resources in the form of a separate ArcGIS GIS Server site was made. Additionally, isolating the system components themselves onto different machines helps to ensure they don't compete for system resources and allows for the opportunity to tailor machine types and sizes to the system requirements of each component. ### **GPU-enabled desktop machines** Selecting the proper GPU (Graphics Processing Unit) is essential for ensuring the performance of ArcGIS Pro in a virtualized environment. Tests revealed that adding a dedicated GPU to ArcGIS Pro virtual machines significantly improved end-user productivity and produced a net reduction in cost when operational expenses (labor costs) are considered. Learn more about GPU hardware selection and ArcGIS Pro virtualization in the ArcGIS Architecture Center. ### Watching for vCPU: CPU in the cloud It's important to understand the ratio of Virtual CPU (vCPU) to physical CPU when making design decisions so system components may be assigned appropriate resources. There is a 2:1 ratio of vCPU:CPU for all machines in the diagram, but some virtualization options may have different ratios, such as 1:1. These decisions may also have Esri licensing implications. Some examples of public cloud ratios include AWS, Azure, and GCP. ### **GIS** services configuration Proper configuration of GIS services is critical to system performance and user experience satisfaction, and the misconfiguration of GIS service instances can introduce problems or reliability challenges in a system. For example, if the number of instances for a map or feature service are set too low, it can result in long client wait times and timeout errors. Setting the instance count too high, however, can consume excessive machine resources, limiting the number of services that can be deployed on a fixed hardware configuration. When the maximum instance setting is higher than the minimum, the system can automatically add new instances in response to demand, but this can also be problematic because incoming requests must wait for the instance to start. For any system, it is important to understand service usage so that instance numbers and server resources can be adjusted to provide optimum performance. In this test study, the ratio of service instances to physical CPU cores was set to 2:1 for each relevant service, with the minimum and maximum instances settings configured at that same value. The instance usage was monitored to determine when the system was overloaded. For example, at 8x design load, the service instances for a service on the hosting server were observed as active for 99% of the test period, which led to high wait times for read-only services. The services in this test were configured for dedicated instances. Learn more about configuring service instance settings. In this test study, the utility network services were configured as follows: - Minimum number of instances per service: 8 - Maximum number of instances per service: 8 The total number of available instances was 16 because there were two ArcGIS GIS Servers in the site. The hosting servers were configured as follows: - Minimum number of instances per service: 6 - Maximum number of instances per service: 6 The total number of available instances was 12 because there were two ArcGIS GIS Servers in the site. The specified service timeouts were configured as follows: Maximum time a client can use a service: 600 seconds - Maximum time a client will wait to get a service: 600 seconds - Maximum time an idle instance can be kept running: 1800 seconds ### Reliability ### **Backups** Backups are critical for Network Information Management Systems. Refer to the reference architecture for more information. While the tested design was not a production system, machine snapshots and database backups were captured for each test run and before making any changes to the system. Virtual machine snapshots were taken before and after any change in the environment (such as resizing a machine, installing a patch, or updating Windows). Snapshots were then cataloged to enable either: - Roll back of a specific machine to a specific point in time - Roll back of the entire environment to a specific point in time ### **High availability** The choice to design this system with a high availability configuration of ArcGIS Enterprise components was made based on business and technical system requirement, along with other organizational goals such as achieving uninterrupted operations and minimizing downtime. This configuration is illustrated in the design with redundant system components and a cloud-native, highly available file store for file storage. This test study did not configure a highly available database for testing purposes, though relational database vendors have a variety of methods to approach high availability including cloud-native services. ### Note: Keep in mind that high availability configurations can significantly increase infrastructure and operational costs of the system and requires specialized skills to be successful. Learn more about design choices and considerations with regard to high availability for a Network Information Management System. ### **Observability** To perform successful system validation and deliver meaningful results, system monitoring and telemetry capture were key aspects to the test study. ArcGIS Monitor and enterprise IT monitoring tools like Windows Performance Monitor were used to monitor the system's performance and capture telemetry on its behavior under certain conditions. Logs were collected across different system components, including: - IIS web server - ArcGIS software components - Windows Events - ArcGIS Pro Machine-level metrics such as CPU usage, RAM consumption, disk activity, and network activity were captured across all machines in the environment. Review the test results for more information. Additionally, screen recordings were captured of conducted workflows to observe and assess enduser experience and productivity. ### **Automation** Because the scope of the test study was primarily focused on load testing, most types of automation that would be recommended for a production system (like scripting administrative tasks) were not employed. However, in your environment, administrative scripts can have significant value to workflows and operations. Any automation scripting should be tested in a lower environment before deploying to production. In this test study, the primary application of automation was for the purpose of simulating requests during load tests. Multiple workflows were run with virtual users at scale with the ability to apply to different load sizes, as illustrated in the test results. Python scripts were used to perform analysis on and identify patterns in service wait times, ArcSOC utilization, response times, and failed requests to inform needed system changes. Python, PowerShell and SQL scripts were also used to restore the database to an original state after completing a load test. ### Security While security was not the focus of the test study, it is critical to consider security requirements early in the design process for any production system. ArcGIS software has been designed to work effectively within secure networks, including those that are fully disconnected from the internet. The test study design does include the use of an identity provider to provide proper authentication and authorization. ### Related resources: - ArcGIS authentication models and providers - Authorization and access models - Secure network design ### Integration While integrations were not within the scope of the test study, a Network Information Management System often requires integration with other enterprise systems like Enterprise Asset Management (EAM), Customer Relationship Management (CRM) and Advanced Distribution Management (ADMS) systems. In addition to standard integration considerations with ArcGIS, the ArcGIS Utility Network capability has additional requirements to consider. Depending on the integration requirements, different APIs and/or SDKs may be supported. See Journey to the Utility Network: Integrations Overview for more information. ### Test methods and results Testing was conducted to validate that the design would perform as expected and support the workflows, users, and intended load. System tests provide the opportunity to discover and correct problems during system deployment in lower environments, ideally before they appear in production. For this test study, the focus of the testing approach was system performance and end-user experience. Each component was monitored as the workflows were conducted against different load scenarios. Upon test completion, results were assembled and analyzed to identify both bottlenecks and over-resourced components in the system. This information was used to identify system components that needed to be scaled up, down, or out before further testing was repeated. Manual user experience testing was conducted by capturing screen recordings of the workflow testers to ensure users of the system could complete their workflows productively. For more information, see how to design an effective test strategy. # **Workflow pacing** This test study applied a pacing model to the **tested workflows**. The pacing model shows how the test intends to simulate the pace of work at a utility, where workflows are performed as some number of operations per hour across a team of staff resources. This approach was based on Esri customer input and aimed to match the small to medium electric utility customer scenario that the data was based on. The various workflows were spread out through a one-hour test period and staggered to avoid starting at the same time, while overlapping with each other as real-world workflows also would. This overall breakdown of workflow pacing is considered the "design load" that the system is subjected to. The load was then increased by multiplying the workflows to a point where the system was no longer able to provide acceptable responses or support successful workflows. Note that the workflow pacing model applied in this test study might not match typical daily use at your organization. # **Performance testing tools** Because ArcGIS is a multi-tier system, performance tests were conducted across client, service, and data storage tiers, as well as the underlying infrastructure itself. In this test study, JMeter was used to simulate the user workflows and measure system performance under different loads. ArcGIS Pro requests were recorded and then replayed to simulate load in addition to manual workflows that were performed to assess end-user experience. Windows Performance Monitor and ArcGIS Monitor were also used to monitor resource utilization across different components. For more information, see tools for performance testing. ### **Test results** This architecture was validated with automated load tests and manual users in four scenarios, and you can see the results from each below. At a high level, the test results show that as implemented, the system is adequately resourced to support loads from the design load through 8x the design load. Tests also reinforced the importance of proper application and system configuration for performance. Across each scenario system utilization increases proportionally with load. ### **Test scenario: Design load** - The system supported the load with low overall resource usage - ArcGIS Data Store (relational) was not used the basemap was accessed as a vector tile service ### Test scenario: 4x design load - The system supported the load - The hosting servers generally ran below 10% CPU - The GIS Servers generally ran below 20% CPU - The PostgreSQL CPU utilization stayed below 20% ### Test scenario: 8x design load - The system supported the load - The hosting servers generally ran below 20% CPU - The GIS Servers generally ran below 35% CPU - The PostgreSQL CPU utilization stayed below 40% with a couple spikes around 65% ### User experience - conducted workflow times While the system was under load, conducted workflow times were captured as experienced by the users. This represents the time it took to complete all the steps listed in the workflows. Conducted workflow times are consistent until the system becomes overloaded at 10x design load. ### User experience - conducted workflow step times While the system was under load, conducted workflow times of key steps across all eight workloads were captured. This represents the average time it took to complete a given step. # How to use this test study This test study has been prepared and presented as part of the ArcGIS Architecture Center to help organizations understand how a specific reference architecture can be designed and deployed on specific physical infrastructure, and how it may perform when tested under load. To make best use of this test study, the following approach is suggested: - Understand the reference architecture first. It contains important information and resources not duplicated in the test study. - Assess the workflows and data used in the test study against those your system supports. The system may support additional or different workloads, but making adjustments to the system, the workflows, and/or the load introduces risk. - 3. **Use** the test study as your guide for implementing your Network Information Management System. Where your workflows and/or requirements differ, we offer a design process you can follow. - 4. **Determine** possible improvement areas for your current implementation by considering design choices made in this test study. - 5. **Evaluate** the testing approach used against your own and look for improvement areas. - 6. **Learn** more about the architecture practices illustrated in the reference architecture in the ArcGIS Architecture Center. ### Additional related resources These resources reference key concepts and practices that may not have been explicitly stated within the test study, but can be significant factors in designing, implementing, and operating a successful Network Information Management System. - Build and manage a GIS program - IT Governance - Upgrades and patching - Backups and disaster recovery - Secure network design